A Docker Alternative Built for Production Workloads
Joblet is a native Linux job execution platform that provides secure process isolation, comprehensive resource management, and enterprise-ready orchestration without the overhead of containers.
Unlike traditional containerization solutions, Joblet leverages Linux namespaces and cgroups directly, providing:
# Replace Docker in CI pipelines
rnx run --runtime=python:3.11-ml pytest tests/
rnx run --runtime=java:21 mvn clean install
rnx run --runtime=node:18 npm run build
# Isolated data processing with resource limits
rnx run --max-memory=8192 --max-cpu=400 \
--volume=data-lake \
--runtime=python:3.11-ml \
python process_big_data.py
# Network-isolated service testing
rnx network create test-env --cidr=10.10.0.0/24
rnx run --network=test-env --runtime=java:17 ./service-a
rnx run --network=test-env --runtime=python:3.11 ./service-b
# ml-pipeline.yaml
jobs:
data-extraction:
command: "python3"
args: ["extract.py"]
runtime: "python:3.11-ml"
resources:
max_memory: 2048
max_cpu: 100
model-training:
command: "python3"
args: ["train.py"]
runtime: "python:3.11-ml"
requires:
- data-extraction: "COMPLETED"
resources:
max_memory: 8192
max_cpu: 400
# Execute and monitor workflow with job names
rnx run --workflow=ml-pipeline.yaml
rnx status --workflow 1
# Output shows human-readable job names and dependencies:
# JOB ID JOB NAME STATUS EXIT CODE DEPENDENCIES
# -----------------------------------------------------------------------------------------
# 42 data-extraction COMPLETED 0 -
# 43 model-training RUNNING - data-extraction
# Resource-bounded health checks with timeout
rnx run --max-cpu=10 --max-memory=64 \
--runtime=python:3.11 \
python health_check.py
# Isolated incident response tooling
rnx run --network=isolated \
--volume=incident-logs \
./debug-analyzer.sh
# Multi-agent system with isolation
rnx run --max-memory=4096 --runtime=python:3.11-ml \
python agent_coordinator.py
rnx run --max-memory=2048 --runtime=python:3.11-ml \
--network=agent-net \
python data_processing_agent.py
rnx run --max-memory=1024 --runtime=python:3.11-ml \
--network=agent-net \
python monitoring_agent.py
Feature | Docker | Joblet |
---|---|---|
Startup Time | 2-5 seconds | 50-200ms |
Memory Overhead | 50-100MB per container | 5-10MB per job |
Security | Container escape risks | Direct process isolation |
Networking | Complex bridge setup | Native Linux networking |
Storage | Image layers & volumes | Direct filesystem access |
Monitoring | External tools required | Built-in comprehensive metrics |
# Install Joblet (see Installation Guide for details)
curl -sSL https://install.joblet.org | bash
# Run your first job
rnx run echo "Hello, Joblet!"
# Create a workflow
cat > ml-pipeline.yaml << EOF
jobs:
analyze:
command: "python3"
args: ["analyze.py", "--data", "/data/input.csv"]
runtime: "python:3.11-ml"
volumes: ["data-volume"]
EOF
# Execute the workflow
rnx run --workflow=ml-pipeline.yaml
Ready to modernize your job execution infrastructure? Start with our Quick Start Guide and experience the Joblet difference.